LOK JAGRUTI UNIVERSITY (LJU) INSTITUTE OF ENGINEERING & TECHNOLOGY

Department of Mechanical Engineering (710)

Bachelor of Technology (B.Tech.) – Semester – III

Course Code:	017101391			
Course Name:	Mathematics-III			
Category of	Basic Science Course (BSC)			
Course:				
Prerequisite	Mathematics 1(017101191), Mathematics 2			
Course:	(017101291)			

	Teaching Scheme				
Lectu re (L)	Tuto rial (T)	Pract ical (P)	Cre dit	Total Hour s	
3	2	0	5	50	

Syllabus						
Unit No.	Торіс	Prerequisite Topic	Successive Topic	Teac hing Hour s		
	Interpolation					
	1.1 Finite differences					
	1.2 Forward, backward and central operators		Use of steam tables and	5 (10%)		
01	1.3 Interpolation by polynomials: newton forward and backward interpolation formulae		Mollier's chart (017103301 -Unit-1.3).			
	1.4 Stirling's central difference		Carnot vapor			
	1.5 Newton's divided difference formulae		cycle(017103301 -Unit-7.1)			
	1.6 Lagrange's interpolation formulae for unequal interval					
	Numerical Integration					
	2.1 Newton-cotes formulae			3		
02	2.2 Trapezoidal and Simpson's formulae			(6%)		
	2.3 Gaussian-quadrature formulae					
	Solution of a System of Linear Equations					
03	3.1 Gauss elimination and partial pivoting			4		
	3.2 Gauss-Jacobi method			(8%)		
	3.3 Gauss-Seidel method					
	Roots of Algebraic and Transcendental Equations					
04	4.1 Bisection method			4		
U4	4.2 False position method			(8%)		
	4.3 Secant method			<u> </u>		

	4.4 Newton-Raphson methods				
	Numerical Solution of Ordinary	Differential Equatio	ns		
	5.1 Euler method			1 4	
05	5.2 Modified Euler method			(8%)	
	5.3 Runge-Kutta methods (Second			(070)	
	and Fourth order)				
	First Order Ordinary Different	ial Equations			
	6.1 Geometric meaning of $y' = f(x,y)$		Euler's equation of		
	direction fields	D	motion along a stream		
		Basic integration	line(017103491-Unit-5.2) Continuity of flow,		
	6.2 Exact differential equations and	(017101191 -Unit-03), Partial	continuity equations for		
	integrating factor	derivatives (2-D and 3-D flow in		
06		017101191-Unit-06)	Cartesian coordinates of	(120/)	
	6.3 Linear differential equations		system(017103491-	(12%)	
	•		Unit-9.3) Flow of		
		Basic integration	viscous fluid through		
	6.4 Bernoulli equations	(017101191-Unit-03)	circular pipe- Hagen		
	1		Poiseuille formula(017103491-		
			Unit-10.2)		
	Higher Order Ordinary Differe	ntial Fauations			
	7.1 Linear differential equations of	nuai Equations			
	second and higher order				
	7.2 Homogeneous linear differential				
	equations of higher order				
	7.3 Higher order non-homogeneous				
	equations	D : 1:00 /: /:		-	
	7.4 Solution by undetermined coefficients	Basic differentiation (017101191-Unit-03)			
		Basic differentiation		-	
07	7.5 Solution by variation of	and integration		8	
07	parameters	(017101191-Unit-03)		(16%)	
	7.6 Solution by $[1/f(D)]$ r(x) method				
	for finding particular integral.			-	
		Solution by undetermined			
	7.7 Ordinary differential equations	coefficients			
	with variable coefficient	(017101391-Unit-7.4),			
	(Reducible to constant	Solution by [1/f(D)]			
	coefficient) (Cauchy and Legendre differential Equation)	r(x) method for finding			
	Legendre differential Equation)	particular integral			
	N. 1.11. 40.11. D.100	(017101391-Unit-7.6)			
	Modeling of Ordinary Different				
		First order ordinary differential equations			
	8.1 Orthogonal trajectories of curves	(017101391-Unit-6.1 to		4	
08		6.4)		(8%)	
	8.2 Oscillations resonance] `	
	8.3 Modeling: Mechanical vibration	Higher order ordinary			
	system	differential			

	(III 1 10 111 11 1)	.' (017101101	
	(Undamped Oscillations)	equations(017101191- Unit-07), Oscillations resonance (017101191- Unit-8.2)	
	Partial Differential Equations		
	9.1 Formation of partial differential equations	Partial derivatives (017101191Unit-06)	
	9.2 First order linear partial differential equations9.3 First order non-linear partial	First order ordinary differential equations (017101191-Unit-06)	
09	differential equations 9.4 Homogeneous linear partial differential equations with constant coefficients		 8 (16%)
	9.5 Non-homogeneous linear partial differential equations with constant coefficients	Homogeneous linear partial differential equations with constant coefficients (017101191-Unit-9.4)	
	9.6 Classification of second order linear partial differential equations		
	Application of Partial Different	ial Equations	
10	10.1 Method of separation of variables	First order ordinary differential equations(017101191-Unit-06), Homogeneous linear differential equations of higher order (017101191-Unit-7.2)	 4 (8%)
	10.2 One dimensional wave equation	Method of separation of	
	10.3 One dimensional heat equation	variables (017101191- Unit-10.1), Half range fourier series (004-Unit- 02)	
	10.4 Laplace equations		

Pro	Proposed Theory + Practical Evaluation Scheme by Academicians (% Weightage Category Wise and it's Marks Distribution)				
L:	3	T:	2	P:	0
Note: In Theory Group, Total 4 Test (T1+T2+T3+T4) will be conducted for each subject. Each Test will be of 25 Marks. Each Test Syllabus Weightage: Range should be 20% - 30%					
Group (Theory or Practical)	Group (Theory or Practical) Credit	Total Subject Credit	Category	% Weightage	Marks Weightage

Theory			MCQ	15%	15	
Theory	_		Theory Descriptive	0%	0	
Theory	5		Formulas and Derivation	0%	0	
Theory			Numerical	85%	85	
Expected Theory %	100%	5	Calculated Theory %	100%	100	
Practical	0		Individual Project	0%	0	
Practical			Group Project	0%	0	
Practical		0		Internal Practical Evaluation (IPE)	0%	0
Practical			Viva	0%	0	
Practical			Seminar	0%	0	
Expected Practical %	0%		Calculated Practical %	0%	0	
Overall %	100%			100%	100	

Cou	rse Outcome
	Upon completion of the course students will be able to
1	Apply numerical methods for various mathematical operations and tasks, such as interpolation, integration, the solution of linear equations.
2	Understand and Apply common numerical analysis and how they are used to obtain approximate solutions for Algebraic, Transcendental and Differential equation and solutions of first order ordinary differential equations
3	Evaluate mathematical methods for the solutions of higher order ordinary differential equations and solve some engineering problems related to oscillation resonance, orthogonal trajectories and mechanical vibration.
4	Form and solve first order linear and nonlinear partial differential equations, apply the various methods to solve higher order partial differential equations, modeling and solve some engineering problems related to Heat flows, Wave equation and Laplace equation
Sug	gested Reference Books
1	Introduction to Numerical Analysis (2nd Edition), C.E. Froberg, Addison-Wesley,1981
2	Numerical Methods for Engineers, Chapra S.C, Canale, R P, Tata McGraw Hill, 2003
3	Elementary Numerical Analysis-An Algorithmic Approach (3rd Edition), S. D. Conte and Carl de Boor, McGraw-Hill, 1980
4	Advanced Engineering Mathematics, Erwin Kreysig, Wiley Publication.
5	Engineering Mathematics Vol 2, by Baburam, Pearson
6	Elementary Differential Equations (8th Edition), W. E. Boyce and R. DiPrima, John Wiley (2005)

List o	f Open Source Software/Learning website
1	https://nptel.ac.in